Header---BioIT@2x.png

Revolutionize knowledge exploration

Meet us at BioIT World 2020, October 6–8

Stop by the virtual booth for:

Free on-demand, interactive literature reviews, exclusive access to special BioIT academic pricing, and more!

Web 1920 – 4.png

Our Speakers

 

Hear from experts how the PercayAI suite is revolutionizing their omics and knowledge exploration workflows.

CompBio: An Augmented Intelligence System for Comprehensive Interpretation of Biological Data

Wednesday, Oct. 7

9:20 A.M. EST
Rich Head, MS; Associate Research Professor of Genetics and the Director of the Genome Technology Access Center, Washington University in St. Louis

Utilizing a revolutionary combination of contextual language processing and memory generation with components of artificial intelligence, the platform enables rapid human interpretation and hypothesis generation (Augmented Intelligence). Direct assessment of disease processes, target identification, drug mechanism of action, and the identification of translational mechanisms between animal models and human disease can occur in hours or days, instead of the weeks to months traditionally required to reach this depth of understanding.

 

Why Current Approaches Using AI in Drug Discovery Fail: How Can We Overcome?

Wednesday, Oct. 7
11:55 A.M. EST
Roundtable moderated by Joe Donahue, Accenture

Details coming soon!

Accelerating Drug Discovery: In Silico Hypothesis Generation

Thursday, Oct. 8
10:40 A.M. EST
Philip R.O. Payne, PhD, FACMI, FAMIA; Director, Institute for Informatics (I2) at Washington University School of Medicine in St. Louis, Associate Dean for Health information and Data Science, Janet and Bernard Becker Professor and Chief Data Scientist

The contemporary drug discovery pipeline is challenged by a number of factors, including ongoing growth in terms of the cost of developing new molecules, increasing regulatory complexity, and barriers to participant recruitment and retention when conducting clinical trials.  All of these issues are further amplified by the demand for targeted and individualized therapeutics.  Such precision medicine paradigms are predicated on the availability of appropriate treatments, and further, the evidence-base needed to align those treatments with unique patient phenotypes.  As an alternative to traditional drug discovery approaches, in silico hypothesis generation has the potential to accelerate the timely, cost-efficient identification of new uses for existing therapies, in the form of either single or combination regimens.  In this presentation, we will explore the current-state-of-the-art in terms of mining extant data and knowledge resources, using artificial intelligence methods, in order to generate and validate hypotheses concerning such drug repositioning candidates.  Using examples from diverse application domains such as cancer, neurodegeneration, and infectious diseases, we will illustrate the potential benefits and pitfalls of such an accelerated drug discovery workflow.

Web_1920_–_4_-_white_back.png

Stop by the booth and get a free on-demand, interactive literature review

 

Contextualize your pathophysiologies, physiologies, genes, metabolites, microbes, or mRNA in less time with the newest tool in our product suite that searches all known of known biology to find the most relevant concepts to your study or area of interest. Fill out the form below, and we'll put you days or weeks ahead with a custom knowledge map.

Ready to learn more?

Contact us to schedule a demo or plan a pairing time.

PercayAI

4220 Duncan Ave

Suite 201

St. Louis, Missouri

63110 

+1.314.325.1810

© 2019 PercayAI  

  • LinkedIn - Black Circle
  • Twitter